Authentic voices. Remarkable stories. AOL On Originals showcase the passions that make the world a more interesting place.
EMMY NOMINATED SERIES directed by and starring Steve Buscemi is back for a second season!!! Park Bench is a local's take on the special people, places, and spirit of New York City. Through unscripted moments with average New Yorkers and Steve's celeb friends, Buscemi takes viewers on a funny, first-hand journey/misadventure, told in his unique voice.
Journey to the Draft is an organic, unscripted, docu-series that follows three college football players, all with promising professional careers. These young men attend different schools across the country and play a variety of positions on the field, but at the end of the day they share one goal:to play in the NFL. The AOL docu-series follows players Leonard Williams, Kevin White and Marcus Peters.
Connected features the personal stories of six New Yorkers woven together into one of the most intimate series ever. This groundbreaking show changes the nature of storytelling by giving each character a camera to document their lives. The result is a unique format revealing as different as everyone appears to be, we are all universally Connected.
Wake up to your world in 2 minutes.
"Stricly Come Dancing presenter Tess Daly and The Saturdays' Rochelle Humes talk to mums about their experiences of being mum. Whether the daughter of a Rolling Stone, in one of the most famous girl bands the world has ever known, or a parent coping with disability as well as family life, each mother in Being Mum shows that the feelings, challenges and rewards of motherhood are universal no matter the surroundings you find yourself in."
Jews and Money. Asian Drivers. Polish IQ. CPT… that's racist! But where do these stereotypes come from? Comedian Mike Epps explores the backstories of this humor and how history and fact often distorts into a snide – but sometimes funny – shorthand.
"INSPIRED" features celebrities, visionaries and some of the biggest newsmakers of our generation, recounting the stories behind their biggest, life-changing moments of inspiration.
In a compelling series of verite encounters, Win Win provides unique access into the minds and lives of the world’s most-celebrated entrepreneurs and athletes.
Explore what it means to be human as we rush head first into the future through the eyes, creativity, and mind of Tiffany Shlain, acclaimed filmmaker and speaker, founder of The Webby Awards, mother, constant pusher of boundaries and one of Newsweek’s “women shaping the 21st Century.”
Nicole Richie brings her unfiltered sense of humor and unique perspective to life in a new series based on her irreverent twitter feed. The show follows the outspoken celebrity as she shares her perspective on style, parenting, relationships and her journey to adulthood.
Comedy is hard, but teaching comedy to children is hilariously difficult. Kevin Nealon is giving the challenge to some world-famous comedians. As these young minds meet with comedy’s best, get ready to learn some valuable comedy lessons, and to laugh!
James Franco loves movies. He loves watching them, acting in them, directing them, and even writing them. And now, he’s going to take some of his favorite movie scenes from the most famous films of all time, and re-imagine them in ways that only James can.
The story of punk rock singer Laura Jane Grace of Against Me! who came out as a woman in 2012, and other members of the trans community whose experiences are woefully underrepresented and misunderstood in the media.
Let’s see if we can stumble our way to another logarithm property. So, let’s say that the log base x of A is equal to B. That is exact same thing as saying that X to the B is equal to A, fair enough.
So, what I want to do is experiment. What happens if I multiply this expression by another variable, let’s call it C. So, I’m going to multiply both sides of this equation times C. So, I’m going to multiply both sides of this equation times C. So, I get C times log base X of A is equal to—and multiply both sides of equation. It’s equal to B times C, fair enough. I think you realize I have not done anything profound just yet.
Well, let’s go back. We said that this is the same thing as this so let’s experiment with some thing. Let’s raise this side to the power C. So, I’m going to raise this side to the power C, that’s kind of a current. And when you type exponents, that’s what you do with the current, so I’m going to raise it to the power C. So then, this sides is X to the B to the C power is equal to A to the C. All you do this is to raise both sides of this equation to the C power.
And what do we know about when you raise something to an exponent and you raise that whole thing to another exponent, what happens to the exponents? Well, that’s just an exponent rule and you just multiply those two exponents. So, this just implies that X to the BC is equal to A to the C. What can we do now? Let’s take the logarithm of both sides or let’s just write this. Let’s not take the logarithm of both sides, let’s write this as a logarithm expression. We know that X to the B C is equal to A to the Z. Well, that’s the exact same thing as saying that the logarithm base X of A to the C, logarithm base X of A to Z is equal to BC, correct? Because all I did is I rewrote this as a logarithm expression.
And I think now you realize that something interesting has happened. That BC, this BC, well of course it’s the same thing as this BC. So, this expression must be equal to this expression and I think we have another logarithm property. That if I have some kind of coefficient in front of the logarithm, we’re multiplying the logarithm so I have C log base X of A but that C times the logarithm base X of A, that equals the log base X of A to the C. So, you could take this coefficient and instead make it an exponent on the turning side of the logarithm. That is another logarithm properties so let’s review what we know so far about logarithms. We know that if I write—let me say C times logarithm base X of A is equal to logarithm base X of A to the C. We know that and we know, we just learned that logarithm base X of A plus logarithm base X of B is equal to the logarithm base X of A times B.
Now, let me ask you a question. What happens if instead of a positive sign here, we put a negative sign? Well, you could probably figure out your self but we could do that same exact proof that we did in the beginning but in this time we will set it up with a negative. So, if I said that log base X of A is equal to L, let’s say that log base X of B is equal to M, let’s say that log base X of A divided by B is equal to N. How can we write all of these expressions and exponents? Well, this just says that X to the L is equal to A. This is just saying that X to the M is equal to B and this is just saying that X to the N is equal to A over B.
So, what can we do here? What is another way of writing A/B? Well, that’s just the same thing as writing X to the L because that’s A, X to the L over X to the M, that’s B. And this we know from our exponent rules, you could write and this could also be written as X to the L, X to the negative M or that also equals X to the L minus M.
So, what do we know? We know that X to the N is equal to X to the L minus M. X to the N is equal to X to the L minus M. Those equal to each other, I just made a big equal chain here. So, we know that N is equal to L minus M. But what is that do for us? What’s another way of writing N? I’m going to do it up here because I think we have stumbled upon another logarithm rule.
What’s another way of writing N? I did it right here. This is another way of writing N. So logarithm, logarithm base X of A over B is equal to L. L is this right here. Log base X of A is equal to L. The log base X of A minus M. That’s log base X of B, there you go. I probably did not have to prove. You could have probably tried it out with the dividing of—whatever but you now are hopefully satisfied that we have this new logarithm property right there.
Now, I’ve one more logarithm property to show you but I don’t think I have time to show in this video so I will do it in the next video. I’ll see you soon.
Comments